Supervised Machine-Generated Text Detectors: Family and Scale Matters

18th September, 2023

Areg Mikael Sarvazyan

areg.sarvazyan@symanto.com

José Ángel González Marc Franco-Salvador Paolo Rosso

ValgrAI

Contents

- 1 Intro
- 2 Related Work
- 3 Generalization of MGT Detectors to new Families/Scales
- 4 MGT Attribution to Families and Scales
- 5 Conclusions and Future Work

Introduction

Motivation

- Al Democratization + LLMs: Possible to generate high-quality malicious text very easily
- Content moderation and defense against large-scale malicious MGT (spam, propaganda, ...)
- Ensure AI regulations and licenses are followed
- Maintain high-quality text data for future training of language models
- Ensure responsible usage of LLMs
 - Detecting MGT (binary classification)
 - Attributing MGT to a particular model (N-way classification)

Text that has been produced without human intervention

- Generated with LLMs
 - High-quality multi-domain and multi-style generation
 - Factual errors [1], hallucination
 - AI democratization = everyone has access
 - Anyone can generate malicious texts

		Pre-trained	Fine-tuned
Accessibility		Everyone	Only technical
Computational Resources	Not modified	Low	High
Human Resources	by a human	Low	Low
Generation Scale	by a numan	High	High
Generation Quality		Medium	High
Accessibility		Everyone	Only technical
Computational Resources	Modified	Low	High
Human Resources	by a human	High	High
Generation Scale	by a numan	Low	Low
Generation Quality		High	Perfect

We focus on large-scale and high-accessibility.

[1] Tam, D., Mascarenhas, A., Zhang, S., Kwan, S., Bansal, M., & Raffel, C. (2022). Evaluating the Factual Consistency of Large Language Models Through Summarization. arXiv preprint arXiv:2211.08412.

State of the Art

- Waterkmarking [2]: make MGT self-identifiable through cryptographic watermarks
 - Only possible if everyone enforces watermarks (otherwise: can paraphrase with another model)
- Machine-aided [3]: capture text artifacts automatically to help humans detect MGT
- Zero-shot [4] (white-box)
 - Use a LLMs probabilities to detect its own MGT: not generalizable to new model
 - We usually don't know what models generated the texts
 - Could not have white-box access to it

[2] Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. *International Conference on Machine Learning*.
[3] Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2019). Defending against neural fake news. *Advances in neural information processing systems*, *32*.
[4] Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., & Finn, C. (2023). Detectgpt: Zero-shot machine-generated text detection using probability curvature. *arXiv preprint arXiv:2301.11305*

State of the Art

- **Supervised** [5, 6]
 - Train models on text and its linguistic and statistical features: generalization is possible
 - Need high quality multi-domain/style data
 - Transformer-based models studied under single-domain assumption
 - Generalization capabilities to new domains must be studied [7]
- MGT attribution is an open problem [8]
 - Only one work studied it deeply with simple models [9]

[8] Crothers, E., Japkowicz, N., & Viktor, H. L. (2023). Machine-generated Text: A Comprehensive Survey of Threat Models and Detection Methods. IEEE Access.

[9] Uchendu, A., Le, T., Shu, K., & Lee, D. (2020, November). Authorship attribution for neural text generation. In Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP) (pp. 8384-8395).

^[5] Rodriguez, J., Hay, T., Gros, D., Shamsi, Z., & Srinivasan, R. (2022, July). Cross-Domain Detection of GPT-2-Generated Technical Text. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1213-1233).

^[6] Maronikolakis, A., Schütze, H., & Stevenson, M. (2021, June). Identifying Automatically Generated Headlines using Transformers. In Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda (pp. 1-6).

^[7] Sarvazyan, A. M., González, J., Franco-Salvador, M., Rangel, F., Chulvi, B., & Rosso, P. (2023). Overview of AuTexTification at IberLEF 2023: Detection and Attribution of Machine-Generated Text in Multiple Domains. Procesamiento Del Lenguaje Natural, 71, 275-288.

In this work

- Study generalization capabilities of Transformer-based supervised MGT detectors
 - How do they generalize to new text generation model families and scales?
- Study a different framing of MGT attribution
 - Can it be done effectively to groups of models?

Definitions

- Family: group of models trained in the same manner
- Scale: group of models with similar number of parameters

Dataset

- AuTexTification 2023 [10] dataset
- Balanced by class, domain, text generation model, language
 - Subtask 1: MGT detection
 - Subtask 2: 6-way Attribution
- MGT by BLOOM and GPT
- 5 domains, 2 languages

			Subtask 1	ι	1			Subtask	2		
						BLOOM	[GPT		
		GEN	Ним	Σ	1b7	3b	7b1	1b	6b7	175b	Σ
	Legal	4,846	4,358	9,204	640	665	712	919	942	919	4,797
sh	News	5,514	5,223	10,737	839	860	881	972	978	987	5,517
in	Reviews	5,695	3,697	9,392	952	962	935	945	941	947	5,682
Spanish	Tweets	5,739	5,634	11,373	967	965	965	928	930	964	5,719
	How-to	5,690	5,795	11,485	894	929	960	970	983	966	5,702
	Total	27,484	24,707	52,191	4,292	4,381	4,453	4,734	4,774	4,783	27,417
	Legal	5,124	5,244	10,368	809	779	832	890	887	927	5,124
sh	News	5,464	5,464	10,928	747	854	906	983	984	984	5,458
gli	Reviews	5,726	5,178	10,904	944	946	939	977	974	972	5,752
English	Tweets	5,813	5,884	11,697	987	968	980	951	963	969	5,818
	How-to	5,862	5,918	11,780	962	976	982	993	993	963	5,869
	Total	27,989	27,688	55,677	4,449	4,523	4,639	4,794	4,801	4,815	28,021

Generalization of MGT Detectors to new Families and Scales

Methodology

- Study Transformer MGT Detectors' generalization to new families and scales
 - Fine-tuning 3 detectors: BLOOM-560m, DeBERTaV3, XLM-RoBERTa
- Disjoint train and test splits for each family (and scale)
 - Train and evaluate on seen families vs unseen families (and scales)
 - Balanced domains and classes
 - e.g. GPT family has 2 disjoint splits, one used for training detectors and one for evaluation only
- We only present English results: **Spanish results are similar**
 - Evaluate with Macro-F1

Datasets

Split	Family	English	Spanish				
Train	BLOOM	10,897	10,511				
	GPT	11,519	11,424		or scale	generalizati	on
Test	BLOOM	2,714	2,615	Split	Scale	English	Spanish
1000	GPT	2,891	2,867	Train	1b	7,432	7,210
Го			_,,		7b	7,509	7,345
FO	or family gen	eralization			175b	3,827	3,866
				Test	1b	1,811	1,816
					7b	1,931	1,882
					175b	988	917

To Unseen Model Families

• Great results when not generalizing to new families

		I	BLOOI	М		\mathbf{GPT}	
Train	Detector	Gen	HUM	Mean	Gen	HUM	Mean
	BLOOM-560	93.7	93.9	93.8	59.3	75.8	67.6
BLOOM	DeBERTa	95.2	94.8	95.0	76.2	80.7	78.4
	XLM-R	93.1	92.1	92.6	79.3	80.9	80.1
	BLOOM-560	72.2	79.8	75.9	89.6	89.8	89.7
\mathbf{GPT}	DeBERTa	85.6	85.1	85.3	89.9	87.8	88.8
	XLM-R	82.4	82.0	82.2	89.5	87.2	88.3

To Unseen Model Families

- Limited generalization to new families
- Especially bad when training with BLOOM and evaluating on GPT: the training family matters
- Higher F1 Scores in human class

0		I	BLOO	M		\mathbf{GPT}	
Train	Detector	Gen	HUM	Mean	Gen	Hum	Mean
	BLOOM-560	93.7	93.9	93.8	59.3	75.8	67.6
BLOOM	DeBERTa	95.2	94.8	95.0	76.2	80.7	78.4
	XLM-R	93.1	92.1	92.6	79.3	80.9	80.1
	BLOOM-560	72.2	79.8	75.9	89.6	89.8	89.7
\mathbf{GPT}	DeBERTa	85.6	85.1	85.3	89.9	87.8	88.8
	XLM-R	82.4	82.0	82.2	89.5	87.2	88.3

To Unseen Model Families

- BLOOM-560m performs worse tan other detectors
 - Appears biased to BLOOM models
- DeBERTa usually better than XLM-R: language specificity preferable

		1	BLOOI	M		\mathbf{GPT}	
Train	Detector	Gen	HUM	Mean	Gen	Hum	Mean
	BLOOM-560	93.7	93.9	93.8	59.3	75.8	67.6
BLOOM	DeBERTa	95.2	94.8	95.0	76.2	80.7	78.4
	XLM-R	93.1	92.1	92.6	79.3	80.9	80.1
	BLOOM-560	72.2	79.8	75.9	89.6	89.8	89.7
\mathbf{GPT}	DeBERTa	85.6	85.1	85.3	89.9	87.8	88.8
	XLM-R	82.4	82.0	82.2	89.5	87.2	88.3

To Unseen Parameter Scales

• Great performance when not generalizing to unseen scales

			1b			$\mathbf{7b}$			175b	
Train	Detector	Gen	Hum	Mean	Gen	HUM	Mean	Gen	Hum	Mean
	BLOOM-560	89.7	90.0	89.9	85.2	86.4	85.8	76.4	83.4	79.9
1b	DeBERTa	93.5	92.9	93.2	91.8	91.0	91.4	89.9	91.4	90.7
	XLM-R	89.3	86.9	88.1	87.9	84.7	86.3	91.1	90.8	90.9
	BLOOM-560	87.5	88.3	87.9	86.0	86.7	$\boldsymbol{86.4}$	79.2	84.8	81.9
7b	DeBERTa	88.7	85.9	87.4	87.2	83.1	85.2	92.4	92.0	92.2
	XLM-R	86.9	82.9	84.9	85.3	79.6	82.5	90.0	88.9	89.4
	BLOOM-560	56.1	74.5	65.3	64.5	77.4	70.9	91.5	91.9	91.7
175b	DeBERTa	69.8	75.5	72.6	81.4	81.8	81.6	92.6	91.5	92.1
	XLM-R	73.3	75.7	74.5	81.4	80.6	80.9	90.5	88.5	89.5

To Unseen Parameter Scales

• Great performance in some generalization scenarios

			1b			$\mathbf{7b}$			175b	
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	Gen	Hum	Mean
	BLOOM-560	89.7	90.0	89.9	85.2	86.4	85.8	76.4	83.4	79.9
1b	DeBERTa	93.5	92.9	93.2	91.8	91.0	91.4	89.9	91.4	90.7
	XLM-R	89.3	86.9	88.1	87.9	84.7	86.3	91.1	90.8	90.9
	BLOOM-560	87.5	88.3	87.9	86.0	86.7	86.4	79.2	84.8	81.9
7b	DeBERTa	88.7	85.9	87.4	87.2	83.1	85.2	92.4	92.0	92.2
	XLM-R	86.9	82.9	84.9	85.3	79.6	82.5	90.0	88.9	89.4
	BLOOM-560	56.1	74.5	65.3	64.5	77.4	70.9	91.5	91.9	91.7
175b	DeBERTa	6 9.8	75.5	72.6	81.4	81.8	81.6	92.6	91.5	92.1
	XLM-R	73.3	75.7	74.5	81.4	80.6	80.9	90.5	88.5	89.5

To Unseen Parameter Scales

• Limited generalization when training with 175B model: training scale matters

			1b			$\mathbf{7b}$			175b	
Train	Detector	Gen	HUM	Mean	Gen	HUM	Mean	Gen	HUM	Mean
	BLOOM-560	89.7	90.0	89.9	85.2	86.4	85.8	76.4	83.4	79.9
1b	DeBERTa	93.5	92.9	93.2	91.8	91.0	91.4	89.9	91.4	90.7
	XLM-R	89.3	86.9	88.1	87.9	84.7	86.3	91.1	90.8	90.9
	BLOOM-560	87.5	88.3	87.9	86.0	86.7	86.4	79.2	84.8	81.9
7b	DeBERTa	88.7	85.9	87.4	87.2	83.1	85.2	92.4	92.0	92.2
	XLM-R	86.9	82.9	84.9	85.3	79.6	82.5	90.0	88.9	89.4
	BLOOM-560	56.1	74.5	65.3	64.5	77.4	70.9	91.5	91.9	91.7
175b	DeBERTa	69.8	75.5	72.6	81.4	81.8	81.6	92.6	91.5	92.1
	XLM-R	73.3	75.7	74.5	81.4	80.6	80.9	90.5	88.5	89.5

To Unseen Parameter Scales

- BLOOM-560m detector is worst performer again
- DeBERTa again better than XLM-R: language specificity is preferable

			1b			7b			175b	
Train	Detector	Gen	HUM	Mean	Gen	Hum	Mean	Gen	Hum	Mean
	BLOOM-560	89.7	90.0	89.9	85.2	86.4	85.8	76.4	83.4	79.9
1b	DeBERTa	93.5	92.9	93.2	91.8	91.0	91.4	89.9	91.4	90.7
	XLM-R	89.3	86.9	88.1	87.9	84.7	86.3	91.1	90.8	90.9
	BLOOM-560	87.5	88.3	87.9	86.0	86.7	86.4	79.2	84.8	81.9
7b	DeBERTa	88.7	85.9	87.4	87.2	83.1	85.2	92.4	92.0	92.2
	XLM-R	86.9	82.9	84.9	85.3	79.6	82.5	90.0	88.9	89.4
	BLOOM-560	56.1	74.5	65.3	64.5	77.4	70.9	91.5	91.9	91.7
$175\mathrm{b}$	DeBERTa	69.8	75.5	72.6	81.4	81.8	81.6	92.6	91.5	92.1
	XLM-R	73.3	75.7	74.5	81.4	80.6	80.9	90.5	88.5	89.5

Insights

- Across Families:
 - Detectors do not generalize well
 - Language specific detectors are preferable over multilingual detectors
 - When generalizing: higher F1 scores in human class
 - The training family matters
- Across Scales:
 - Detectors generalize well to new scales
 - Poor generalization from very large to very small scales (175B to 1B)
 - Language specificity of detectors is preferible
 - The training scale matters

Motivation

- Only 6 labels in this dataset... what happens with more text generators?
 - There are 100+ high-quality open source LLMs currently
 - Fine-grained attribution not practical
- Instead classify family and scale independently: reduce output space & make task easier

Methodology

- Explore feasibility of attributing to families and scales
- Group AuTexTification 2023 Subtask 2 dataset by families and scales
- Fine-tune the same Transformer-based detectors

Datasets

	Tr	ain	Test				
	GPT	BLOOM	GPT	BLOOM			
English	11,519	10,897	2,891	2,714			
Spanish	11,424	10,511	2,867	2,615			

For family generalization

For scale generalization

	Tra	ain	Test			
	1b	7b	1b	7b		
English	7509	7432	1931	1811		
Spanish	7345	7210	1882	1816		

* We exclude GPT 175B and BLOOM-3. Only use 1B and 7B models since these scales are available in both families (more fairness for studies)

Attributing to Families

• Very feasible and practical

	English				Spanish		
Attributor	BLOOM	GPT	Mean	Attributor	BLOOM	GPT	Mean
BLOOM-560	90.55	91.23	90.89	BLOOM-560	91.25	92.46	91.86
DeBERTa	94.09	94.51	94.30	MarIA	94.77	95.25	95.01
XLM-R	93.97	93.97	93.97	XLM-R	95.10	95.48	95.29

Attributing to Scales

• Not so practical: results hint that main limitation in attribution is model scale

	English				Spanish		
Attributor	1b	7b	Mean	Attributor	1b	7b	Mean
BLOOM-560	56.47	60.59	58.53	BLOOM-560	59.90	57.56	58.73
DeBERTa	67.15	69.93	68.54	MarIA	70.42	72.40	71.41
XLM-R	65.23	0.00	32.61	XLM-R	65.87	0.00	32.93

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Good generalization of detectors to scales, bad generalization to families
- Training family and scale is important and should be considered when training new detectors
- Language specific models should be preferred over multilingual models
- Family attribution is practical, scale attribution has its limitations
 - The difficulty of fine-grained attribution is due to scales

Future Work

- Deeper linguistic analysis of differences between MGT and human text
- Detectors and attributors that include task-specific features
 - How does human "decoding" differ from LLM "decoding"? And how can we use this to our advantage?

Questions?

MGT Detector generalization in Spanish

To Unseen Model Families

		BLOOM		GPT			
Train	Detector	Gen	Ним	Mean	Gen	Ним	mean
	BLOOM-560	88.05	87.78	87.91	65.03	73.52	69.28
BLOOM	MarIA	96.25	96.29	96.27	58.95	75.91	67.43
	XLM-R	91.74	90.32	91.03	73.93	76.29	75.11
GPT	BLOOM-560	52.68	73.91	63.30	90.69	91.12	90.91
	MarIA	56.91	75.64	66.27	94.97	94.98	94.98
	XLM-R	70.58	76.76	73.67	91.14	89.50	90.32

MGT Detector generalization in Spanish

To Unseen Parameter Scales

			1b			7b			$175\mathrm{b}$	
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	Gen	Hum	Mean
1b	BLOOM-560	90.57	90.09	90.33	86.76	86.77	86.72	86.58	88.98	87.78
	MarIA	94.13	94.25	94.19	90.90	91.54	91.22	83.33	87.50	85.42
	XLM-R	87.85	84.35	86.10	86.67	82.62	84.64	91.58	91.18	91.38
7 b	BLOOM-560	88.03	88.35	88.19	87.54	87.75	87.65	88.48	90.41	89.44
	MarIA	91.75	92.00	91.88	92.52	92.54	92.53	93.43	94.20	93.82
	XLM-R	85.61	80.24	82.92	84.64	78.37	81.51	90.16	88.69	89.43
175b	BLOOM-560	51.85	73.16	62.50	55.37	74.22	64.80	93.27	93.64	93.45
	MarIA	53.77	74.23	64.00	64.16	77.27	70.71	96.29	96.30	96.29
	XLM-R	73.45	75.17	74.31	79.97	78.88	79.42	90.74	88.80	89.77

Este proyecto ha sido cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER) con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad.

Una manera de hacer Europa

SYMANTO SPAIN, S.L.U.

PRO²HATERS: "PROactive PROfiling HATE speech spreadeRS"

XAI-DisInfodemics:

eXplainable AI for disinformation and conspiracy detection during infodemics

Grant **PLEC2021-007681** funded by MCIN/AEI/ 10.13039/501100011033 and by European Union NextGenerationEU/PRTR.

ANDHI: ANomalous Difussion of Harmful Information

Grant **CPP2021-008994** funded by MCIN/AEI/ 10.13039/501100011033 and by European Union NextGenerationEU/PRTR.