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Machine-Generated Text (MGT)

Text that has been produced without human intervention

• Large-scale automatic text generation

• Sampling from a language model

• Before LLMs
• Low quality
• Easy to distinguish from human text
• Factual errors
• Syntactic and grammar artifacts



Machine-Generated Text (MGT)

• Now we have Large Language Models!
• High-quality multi-domain and multi-style generation

• Factual errors [1], hallucination

• Can be used to generate high-quality malicious text very easily

• Ensure a responsible use of LLMs
• Detect machine-generated text

• Attribute machine-generated text to a particular model
• Who is behind malicious MGT?

• Important for fair use and licensing



How to detect MGT?

• Zero-shot [2, 3]
• Usually white-box

• Use model A probabilities to detect model A text

• Vast LLM ecosystem
• Not generalizable to detecting MGT from other models



How to detect MGT?

• Supervised [4-8]
• Train models on annotated text and its linguistic and statistical features

• Could generalize to other text generation models

• Need high quality multi-domain/style data

AuTexTification 2023



AuTexTification 2023

Shared task @IberLEF2023
• Annotated multi-domain data in Spanish and English

• Study generalization to new domains

• Tasks: MGT Detection and MGT Attribution



AuTexTification 2023

MGT Detection
• human or machine

MGT Attirbution
• Which model's MGT?



[1

AuTexTification 2023

Final datasets
• Generations by BLOOM and GPT models with nucleus sampling

• BLOOM-1b1, -3b, -7b

• GPT: babbage (1b), curie (6b7), davinci (175b)

• Domains: tweets, reviews, how-to articles, news, legal documents

• Base datasets with balanced domains:
• English: Amazon Polarity [9], XSUM [10], WikiLingua [11], MultiEURLEX [12], TSATC [13]

• Spanish: COAH [14], COAR [15], MLSUM [16], XLSum [17], WikiLingua [11], MultiEURLEX
[12], Spanish Politics Tweets [18]

• Human continuations and generated continuations

• Cleaning punctuations, whitespaces & filtering by language ID, empty 
generations, etc.



AuTexTification 2023

Submissions included
• Token and text level probabilities and entropies

• Lexical, syntactical, grammatical and readability text features

• Text embeddings: CNNs, pre-trained transformers

• Logistic Regression, MLPs, Tree-based classifiers, fine-tuned transformers

• Best results are ensembles of many classifiers on many feature combinations

Baselines
• Fine-tuned transformers: Roberta-BNE [19] (Spanish), DeBERTaV3 [20] (English)

• Symanto Brain1: Zero and few-shot models (SB)

• Random baseline

1 PEFT fine-tuning and classification by embedding similarities to label descriptions. More info: https://www.symanto.com/nlp-tools/symanto-brain/.

https://www.symanto.com/nlp-tools/symanto-brain/


AuTexTification 2023

Subtask 1: Machine-Generated Text Detection
• Train: Tweets, how-to articles, legal documents

• Test: Reviews, news



AuTexTification 2023

Subtask 1: Machine-Generated Text Detection
• Rank and macro-f1 w/bootstrapped confidence intervals

Spanish English



AuTexTification 2023

Subtask 1: Machine-Generated Text Detection
• Precision-recall curves

Spanish English



AuTexTification 2023

Subtask 1: Machine-Generated Text Detection
• Per domain macro-F1

Spanish English



AuTexTification 2023

Subtask 2: Model Attribution
• Same domains for train and test (tweets, how-to, reviews, news, legal)



AuTexTification 2023

Subtask 2: Model Attribution
• Rank and macro-f1 w/bootstrapped confidence intervals

EnglishSpanish



AuTexTification 2023

Subtask 2: Model Attribution
• Per domain macro-F1

Spanish English



Generalization to Families and Scales



Generalization to Families and Scales

Study MGT detector generalization
• Family: models trained similarly (BLOOM is one family, GPT is another)

• Scale: models of similar number of parameters

• Fine-tune pre-trained transformers on one family (scale)

• Evaluate on other family (scale)



Generalization to Families and Scales

Study MGT detector generalization
• Group data from both subtasks:

• Human text from subtask 1
• Generated text with fine-grained annotations from subtask 2

• Data transformations for model, class and domain balance
• All five domains in both train and test sets

• Train and test splits for each family or scale

• 3 MGT detectors: fine-tuned BLOOM-560m, DeBERTaV3, XLM-RoBERTa

• We only present results for English



Generalization to Families and Scales

Generalization to families



Generalization to Families and Scales

Generalization to families



Generalization to Families and Scales

Generalization to families



Generalization to Families and Scales

Generalization to scales



Generalization to Families and Scales

Generalization to scales



Generalization to Families and Scales

Generalization to scales



Conclusions

• AuTexTification
• Multi-domain / style annotated datasets for MGT detection and attribution

• Many types of solutions

• Scores as high as 80% macro-f1 (detection) and 65% (attribution)

• Family and scale generalization
• Usually generalize well to families and scales

• Difficult to generalize when gpt-3 davinci (175B) is involved
• Quality differences between generated texts subjectively

• Not so much between human and generated



Questions?
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XAI-DisInfodemics: 

eXplainable AI for disinformation and conspiracy detection during infodemics 
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ANomalous Difussion of Harmful Information
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