AuTexTification 2023 and more

Detection and Attribution of Machine-Generated

Text in Multiple Domains

Areg Mikael Sarvazyan

areg.sarvazyan@symanto.com

Contents

- The problem: detecting machine-generated text
- Possible solutions
- The AuTexTification 2023 shared task
- ...and more: Generalization to model families and parameter scales

Machine-Generated Text (MGT)

Text that has been produced without human intervention

- Large-scale automatic text generation
- Sampling from a language model
- Before LLMs
 - Low quality
 - Easy to distinguish from human text
 - Factual errors
 - Syntactic and grammar artifacts

Machine-Generated Text (MGT)

- Now we have Large Language Models!
 - High-quality multi-domain and multi-style generation
 - Factual errors [1], hallucination
 - Can be used to generate high-quality malicious text very easily
- Ensure a responsible use of LLMs
 - Detect machine-generated text
 - Attribute machine-generated text to a particular model
 - Who is behind malicious MGT?
 - Important for fair use and licensing

How to detect MGT?

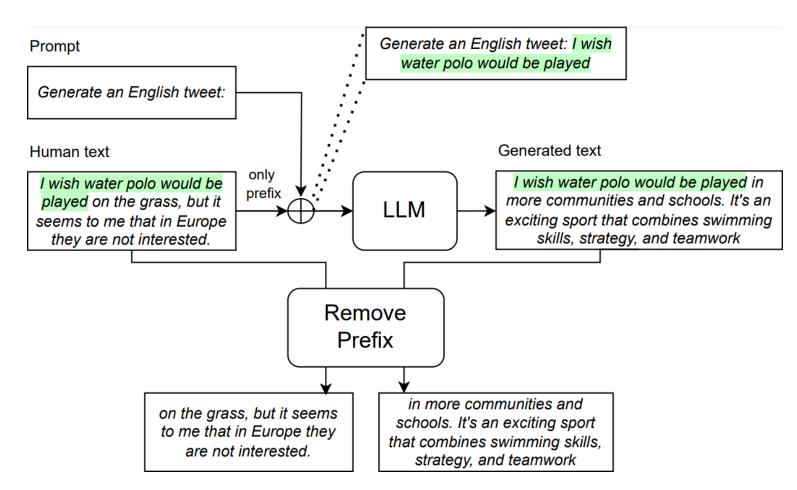
- Zero-shot [2, 3]
 - Usually white-box
 - Use *model A* probabilities to detect *model A* text
 - Vast LLM ecosystem
 - Not generalizable to detecting MGT from other models

How to detect MGT?

- Supervised [4-8]
 - Train models on annotated text and its linguistic and statistical features
 - Could generalize to other text generation models
 - Need high quality multi-domain/style data

AuTexTification 2023

Shared task @IberLEF2023


- Annotated multi-domain data in Spanish and English
- Study generalization to new domains
- Tasks: MGT Detection and MGT Attribution

MGT Detection

• human or machine

• Which model's MGT?

Final datasets

- Generations by BLOOM and GPT models with nucleus sampling
 - BLOOM-1b1, -3b, -7b
 - GPT: babbage (1b), curie (6b7), davinci (175b)
- Domains: tweets, reviews, how-to articles, news, legal documents
- Base datasets with balanced domains:
 - English: Amazon Polarity [9], XSUM [10], WikiLingua [11], MultiEURLEX [12], TSATC [13]
 - Spanish: COAH [14], COAR [15], MLSUM [16], XLSum [17], WikiLingua [11], MultiEURLEX [12], Spanish Politics Tweets [18]
- Human continuations and generated continuations
- Cleaning punctuations, whitespaces & filtering by language ID, empty generations, etc.

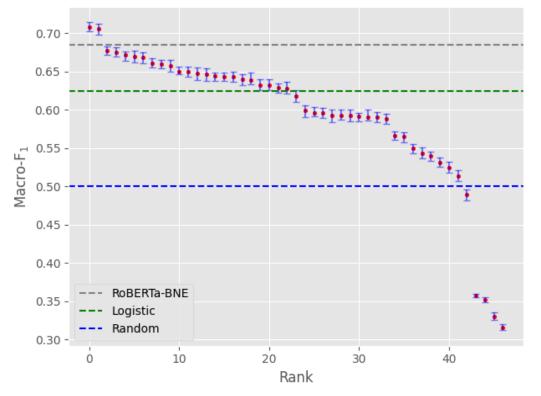
Baselines

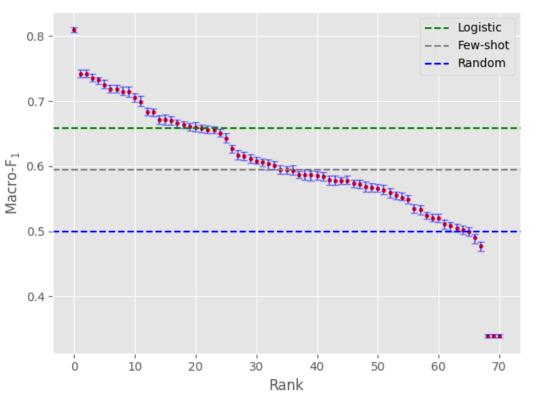
- Fine-tuned transformers: Roberta-BNE [19] (Spanish), DeBERTaV3 [20] (English)
- Symanto Brain¹: Zero and few-shot models (SB)
- Random baseline

Submissions included

- Token and text level probabilities and entropies
- Lexical, syntactical, grammatical and readability text features
- Text embeddings: CNNs, pre-trained transformers
- Logistic Regression, MLPs, Tree-based classifiers, fine-tuned transformers
- Best results are ensembles of many classifiers on many feature combinations

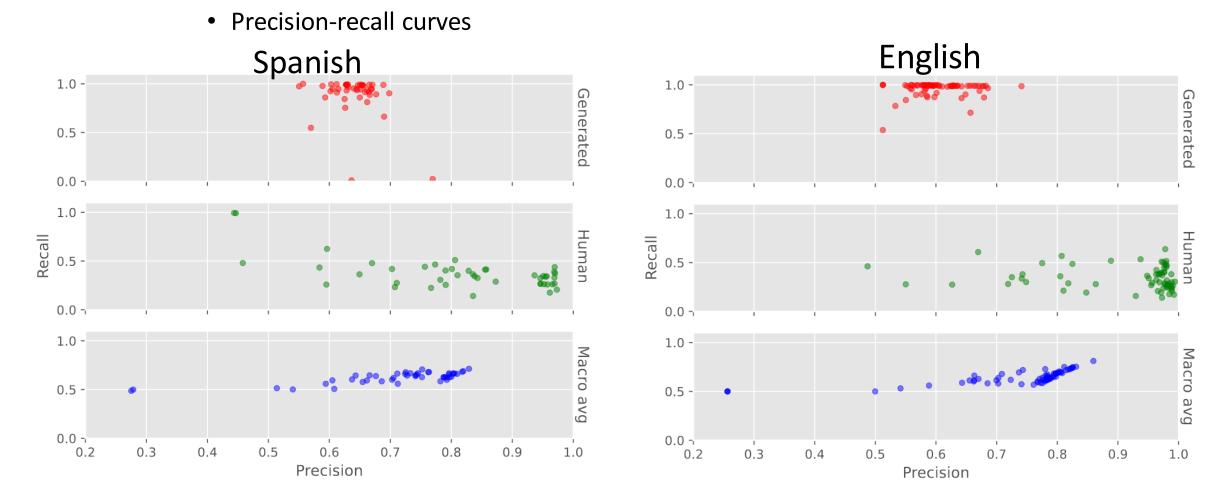
Subtask 1: Machine-Generated Text Detection

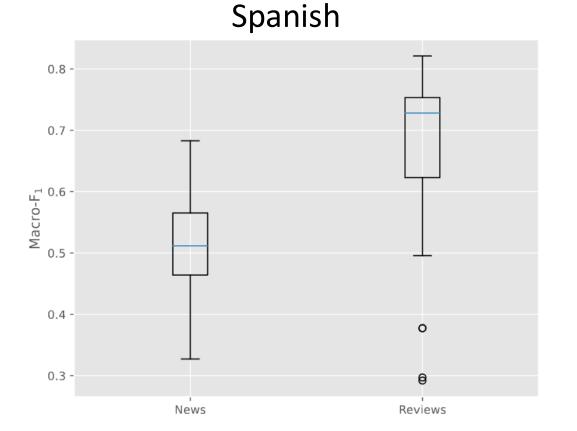

- Train: Tweets, how-to articles, legal documents
- Test: Reviews, news

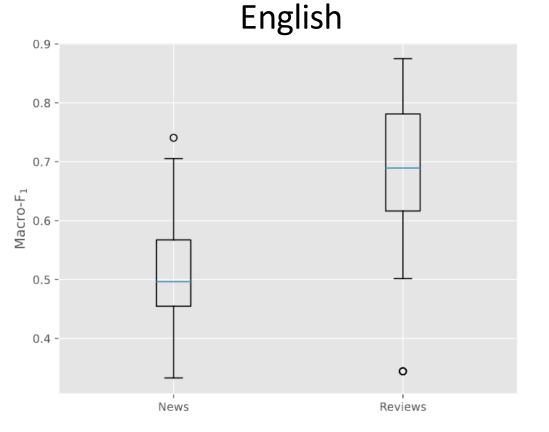

	Language	Split	Human	Generated
Subtask 1:	English	Train	$17,\!046$	16,799
MGT		Test	$10,\!642$	$11,\!190$
Detection	Spanish	Train	15,787	16,275
Detection		Test	11,209	8,920

Subtask 1: Machine-Generated Text Detection

• Rank and macro-f1 w/bootstrapped confidence intervals

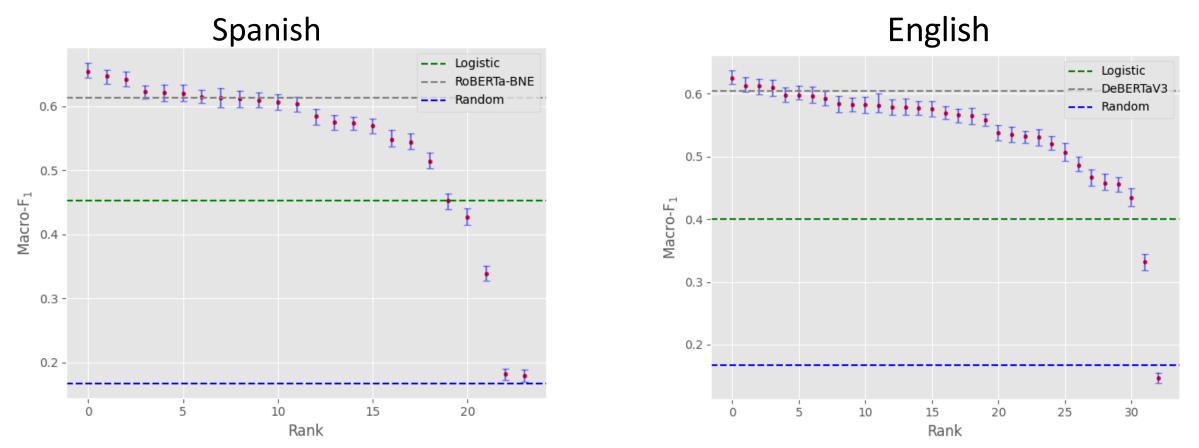

Spanish


English


Subtask 1: Machine-Generated Text Detection

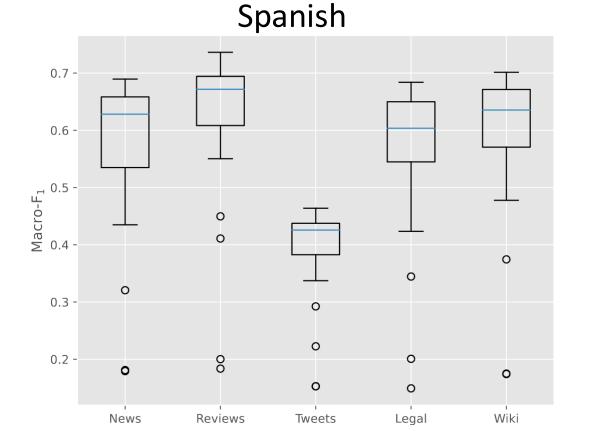
Subtask 1: Machine-Generated Text Detection

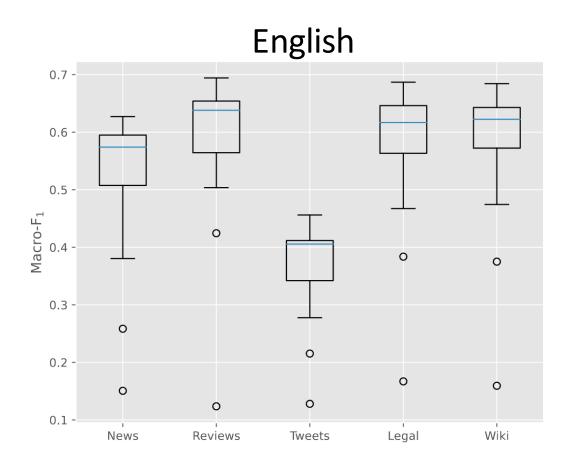
• Per domain macro-F1


Subtask 2: Model Attribution

• Same domains for train and test (tweets, how-to, reviews, news, legal)

			E	BLOOM			\mathbf{GPT}	
	Language	Split	1b7	3b	7b	babbage	curie	davinci
Subtask 2:	English	Train	3,562	$3,\!648$	$3,\!687$	3,870	3,822	3,827
Model	English	Test	887	875	952	924	979	988
Attribution	S ra a rai a la	Train	3,422	3,514	$3,\!575$	3,788	3,770	3,866
Autioution	Spanish	Test	870	867	878	946	$1,\!004$	917


Subtask 2: Model Attribution


• Rank and macro-f1 w/bootstrapped confidence intervals

Subtask 2: Model Attribution

• Per domain macro-F1

Study MGT detector generalization

- *Family:* models trained similarly (BLOOM is one family, GPT is another)
- *Scale:* models of similar number of parameters

- Fine-tune pre-trained transformers on one family (scale)
- Evaluate on other family (scale)

Study MGT detector generalization

- Group data from both subtasks:
 - Human text from subtask 1
 - Generated text with fine-grained annotations from subtask 2
- Data transformations for model, class and domain balance
 - All five domains in both train and test sets
- Train and test splits for each family or scale
- 3 MGT detectors: fine-tuned BLOOM-560m, DeBERTaV3, XLM-RoBERTa
- We only present results for English

Generalization to families

		1	BLOOM	I	GPT			
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	
	BLOOM-560	93.70	93.92	93.81	59.32	75.81	67.57	
BLOOM	DeBERTa	95.21	94.79	95.00	76.19	80.66	78.43	
	XLM-R	93.13	92.14	92.63	79.26	80.86	80.06	
	BLOOM-560	72.17	79.82	75.99	89.61	89.78	89.69	
\mathbf{GPT}	DeBERTa	85.61	85.05	85.33	89.94	87.82	88.88	
	XLM-R	82.40	82.04	82.22	89.52	87.22	88.37	

Generalization to families

		1	BLOOM	1	GPT			
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	
	BLOOM-560	93.70	93.92	93.81	59.32	75.81	67.57	
BLOOM	DeBERTa	95.21	94.79	95.00	76.19	80.66	78.43	
	XLM-R	93.13	92.14	92.63	79.26	80.86	80.06	
	BLOOM-560	72.17	79.82	75.99	89.61	89.78	89.69	
\mathbf{GPT}	DeBERTa	85.61	85.05	85.33	89.94	87.82	88.88	
	XLM-R	82.40	82.04	82.22	89.52	87.22	88.37	

Generalization to families

		1	BLOOM	1	GPT			
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	
	BLOOM-560	93.70	93.92	93.81	59.32	75.81	67.57	
BLOOM	DeBERTa	95.21	94.79	95.00	76.19	80.66	78.43	
	XLM-R	93.13	92.14	92.63	79.26	80.86	80.06	
	BLOOM-560	72.17	79.82	75.99	89.61	89.78	89.69	
\mathbf{GPT}	DeBERTa	85.61	85.05	85.33	89.94	87.82	88.88	
	XLM-R	82.40	82.04	82.22	89.52	87.22	88.37	

Generalization to scales

			1b			7b			$175\mathrm{b}$	
Train	Detector	Gen	Hum	Mean	Gen	Hum	Mean	Gen	Hum	Mean
	BLOOM-560	89.69	90.04	89.89	85.22	86.45	85.84	76.37	83.43	79.90
1b	DeBERTa	93.46	92.88	93.17	91.84	91.04	91.44	89.90	91.45	90.67
	XLM-R	89.29	86.96	88.13	87.87	84.67	86.27	91.12	90.86	90.99
	BLOOM-560	87.49	88.25	87.87	86.02	86.72	86.37	79.16	84.75	81.96
7b	DeBERTa	88.71	85.99	87.35	87.20	83.14	85.17	92.38	92.03	92.20
	XLM-R	86.92	82.89	84.91	85.30	79.59	82.45	90.02	88.87	89.44
	BLOOM-560	56.14	74.47	65.30	64.47	77.36	70.92	91.52	91.97	91.75
$175\mathrm{b}$	DeBERTa	69.77	75.51	72.64	81.36	81.86	81.61	92.64	91.48	92.06
	XLM-R	73.31	75.67	74.49	81.36	80.61	80.99	90.50	88.45	89.48

Generalization to scales

		$1\mathrm{b}$			7b			$175\mathrm{b}$	
Detector	Gen	HUM	Mean	Gen	Hum	Mean	Gen	Hum	Mean
BLOOM-560	89.69	90.04	89.89	85.22	86.45	85.84	76.37	83.43	79.90
DeBERTa	93.46	92.88	93.17	91.84	91.04	91.44	89.90	91.45	90.67
KLM-R	89.29	86.96	88.13	87.87	84.67	86.27	91.12	90.86	90.99
BLOOM-560	87.49	88.25	87.87	86.02	86.72	86.37	79.16	84.75	81.96
DeBERTa	88.71	85.99	87.35	87.20	83.14	85.17	92.38	92.03	92.20
KLM-R	86.92	82.89	84.91	85.30	79.59	82.45	90.02	88.87	89.44
BLOOM-560	56.14	74.47	65.30	64.47	77.36	70.92	91.52	91.97	91.75
DeBERTa	69.77	75.51	72.64	81.36	81.86	81.61	92.64	91.48	92.06
KLM-R	73.31	75.67	74.49	81.36	80.61	80.99	90.50	88.45	89.48
	LOOM-560 eBERTa LM-R LOOM-560 eBERTa LM-R LOOM-560 eBERTa	LOOM-56089.69eBERTa 93.46 LM-R89.29LOOM-56087.49eBERTa 88.71 LM-R86.92LOOM-56056.14eBERTa69.77	etectorGENHUMLOOM-56089.6990.04eBERTa 93.4692.88 LM-R89.2986.96LOOM-56087.49 88.25 eBERTa 88.71 85.99LM-R86.9282.89LOOM-56056.1474.47eBERTa69.7775.51	etectorGENHUMMeanLOOM-56089.6990.0489.89eBERTa 93.4692.8893.17 LM-R89.2986.9688.13LOOM-56087.49 88.2587.87 eBERTa 88.71 85.9987.35LM-R86.9282.8984.91LOOM-56056.1474.4765.30eBERTa69.7775.5172.64	etectorGENHUMMeanGENLOOM-56089.6990.0489.8985.22eBERTa 93.4692.8893.1791.84 LM-R89.2986.9688.1387.87LOOM-56087.49 88.2587.87 86.02eBERTa 88.71 85.9987.35 87.20 LM-R86.9282.8984.9185.30LOOM-56056.1474.4765.3064.47eBERTa69.7775.5172.64 81.36	etectorGENHUMMeanGENHUMLOOM-56089.6990.0489.8985.2286.45eBERTa 93.4692.8893.1791.8491.04 LM-R89.2986.9688.1387.8784.67LOOM-56087.49 88.2587.87 86.02 86.72 eBERTa 88.71 85.9987.35 87.20 83.14LM-R86.9282.8984.9185.3079.59LOOM-56056.1474.4765.3064.4777.36eBERTa69.7775.5172.64 81.3681.86	etectorGENHUMMeanGENHUMMeanLOOM-56089.6990.0489.8985.2286.4585.84eBERTa 93.4692.8893.1791.8491.0491.44 LM-R89.2986.9688.1387.8784.6786.27LOOM-56087.49 88.2587.87 86.02 86.7286.37 eBERTa 88.71 85.9987.35 87.20 83.1485.17LM-R86.9282.8984.9185.3079.5982.45LOOM-56056.1474.4765.3064.4777.3670.92eBERTa69.7775.5172.64 81.3681.8681.61	etectorGENHUMMeanGENHUMMeanGENLOOM-56089.6990.0489.8985.2286.4585.8476.37eBERTa 93.4692.8893.1791.8491.0491.44 89.90LM-R89.2986.9688.1387.8784.6786.27 91.12 LOOM-56087.49 88.2587.87 86.02 86.7286.37 79.16eBERTa 88.71 85.9987.35 87.20 83.1485.17 92.38 LM-R86.9282.8984.9185.3079.5982.4590.02LOOM-56056.1474.4765.3064.4777.3670.9291.52eBERTa69.7775.5172.64 81.3681.8681.6192.64	etectorGENHUMMeanGENHUMMeanGENHUMLOOM-56089.6990.0489.8985.2286.4585.8476.3783.43eBERTa 93.4692.8893.1791.8491.0491.44 89.90 91.45 LM-R89.2986.9688.1387.8784.6786.27 91.12 90.86LOOM-56087.49 88.2587.87 86.02 86.7286.37 79.1684.75eBERTa 88.71 85.9987.35 87.20 83.1485.17 92.3892.03 LM-R86.9282.8984.9185.3079.5982.4590.0288.87LOOM-56056.1474.4765.3064.4777.3670.9291.52 91.97 eBERTa69.7775.5172.64 81.3681.8681.6192.64 91.48

Generalization to scales

			$1\mathrm{b}$			7b			$175\mathrm{b}$	
Train	Detector	Gen	Hum	Mean	Gen	HUM	Mean	Gen	Hum	Mean
	BLOOM-560	89.69	90.04	89.89	85.22	86.45	85.84	76.37	83.43	79.90
1b	DeBERTa	93.46	92.88	93.17	91.84	91.04	91.44	89.90	91.45	90.67
	XLM-R	89.29	86.96	88.13	87.87	84.67	86.27	91.12	90.86	90.99
	BLOOM-560	87.49	88.25	87.87	86.02	86.72	86.37	79.16	84.75	81.96
7 b	DeBERTa	88.71	85.99	87.35	87.20	83.14	85.17	92.38	92.03	92.20
	XLM-R	86.92	82.89	84.91	85.30	79.59	82.45	90.02	88.87	89.44
	BLOOM-560	56.14	74.47	65.30	64.47	77.36	70.92	91.52	91.97	91.75
$175\mathrm{b}$	DeBERTa	69.77	75.51	72.64	81.36	81.86	81.61	92.64	91.48	92.06
	XLM-R	73.31	75.67	74.49	81.36	80.61	80.99	90.50	88.45	89.48

Conclusions

- AuTexTification
 - Multi-domain / style annotated datasets for MGT detection and attribution
 - Many types of solutions
 - Scores as high as 80% macro-f1 (detection) and 65% (attribution)
- Family and scale generalization
 - Usually generalize well to families and scales
 - Difficult to generalize when gpt-3 davinci (175B) is involved
 - Quality differences between generated texts subjectively
 - Not so much between human and generated

Questions?

References

[1] Tam, D., Mascarenhas, A., Zhang, S., Kwan, S., Bansal, M., & Raffel, C. (2022). Evaluating the Factual Consistency of Large Language Models Through Summarization. arXiv preprint arXiv:2211.08412.

[2] Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., ... & Wang, J. (2019). Release Strategies and the Social Impacts of Language Models.

[3] Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., & Finn, C. (2023). Detectgpt: Zero-shot machine-generated text detection using probability curvature. *arXiv preprint arXiv:2301.11305*.

[4] Rodriguez, J., Hay, T., Gros, D., Shamsi, Z., & Srinivasan, R. (2022, July). Cross-Domain Detection of GPT-2-Generated Technical Text. In *Proceedings of the 2022* Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1213-1233).

[5] Uchendu, A., Le, T., Shu, K., & Lee, D. (2020, November). Authorship attribution for neural text generation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)* (pp. 8384-8395).

[6] Ippolito, D., Duckworth, D., Callison-Burch, C., & Eck, D. (2020, July). Automatic Detection of Generated Text is Easiest when Humans are Fooled. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics* (pp. 1808-1822).

[7] Maronikolakis, A., Schütze, H., & Stevenson, M. (2021, June). Identifying Automatically Generated Headlines using Transformers. In *Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda* (pp. 1-6).

[8] Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., & Choi, Y. (2019). Defending against neural fake news. Advances in neural information processing systems, 32.

[9] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in neural information processing systems, 28.

[10] Narayan, S., Cohen, S. B., & Lapata, M. (2018). Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing* (pp. 1797-1807).

References

[11] Ladhak, F., Durmus, E., Cardie, C., & Mckeown, K. (2020, November). WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization. In *Findings* of the Association for Computational Linguistics: EMNLP 2020 (pp. 4034-4048).

[12] Chalkidis, I., Fergadiotis, M., & Androutsopoulos, I. (2021, November). MultiEURLEX-A multi-lingual and multi-label legal document classification dataset for zeroshot cross-lingual transfer. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing* (pp. 6974-6996).

[13] Naji, I. (2012). TSATC: Twitter Sentiment Analysis Training Corpus.

[14] Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M. T., & Urena-López, L. A. (2014). Cross-domain sentiment analysis using Spanish opinionated words. In *Natural Language Processing and Information Systems: 19th International Conference on Applications of Natural Language to Information Systems, NLDB 2014, Montpellier, France, June 18-20, 2014. Proceedings 19* (pp. 214-219). Springer International Publishing.

[15] Molina-González, M. D., Martínez-Cámara, E. COAR. https://sinai.ujaen.es/en/research/resources/coar.

[16] Scialom, T., Dray, P. A., Lamprier, S., Piwowarski, B., & Staiano, J. (2020, November). MLSUM: The Multilingual Summarization Corpus. In 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 8051-8067). Association for Computational Linguistics.

[17] Hasan, T., Bhattacharjee, A., Islam, M. S., Mubasshir, K., Li, Y. F., Kang, Y. B., ... & Shahriyar, R. (2021, August). XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021* (pp. 4693-4703).

[18] Moya, R. Tweets Política España, Version 6. Retrieved February 1, 2023 from https://www.kaggle.com/datasets/ricardomoya/tweets-poltica-espaa.

[19] Gutiérrez Fandiño, A., Armengol Estapé, J., Pàmies, M., Llop Palao, J., Silveira Ocampo, J., Pio Carrino, C., ... & Villegas, M. (2022). MarIA: Spanish Language Models. Procesamiento del Lenguaje Natural, 68.

[20] He, P., Gao, J., & Chen, W. (2021). Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*.

Este proyecto ha sido cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER) con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad.

Una manera de hacer Europa

SYMANTO SPAIN, S.L.U.

PRO²HATERS: "PROactive PROfiling HATE speech spreadeRS"

XAI-DisInfodemics:

eXplainable AI for disinformation and conspiracy detection during infodemics

Grant **PLEC2021-007681** funded by MCIN/AEI/ 10.13039/501100011033 and by European Union NextGenerationEU/PRTR.

ANDHI: ANomalous Difussion of Harmful Information

Grant **CPP2021-008994** funded by MCIN/AEI/ 10.13039/501100011033 and by European Union NextGenerationEU/PRTR.